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1 QUALIIATIVE PROBABILISTIC NETWORKS

1 Qualitative Probabilistic Networks

T e modeling advantages of influence diagrams are largely attributable to the graphical
nature of the representation, which highlights the important relationships among the domain
variables. As in the related belief-network representation [5], the struct tire of an influence
diagrain reveals the lel endencies (and implicitly, the iiidependencies) operating amiong the
variables of interest. Furthermore, transformation-based algorithms for evaluating influence
diagrams- -such as Shachter's [8]--preserve the model's structural properties at each stage
of the computation. Each transformation step corresponds to an intuitive operation on the
variables ("averaging out" or "belief revision"). Such graphical inference is attractive because
the operators may be arranged flexibly to answer a variety of queries [9].

These desirable properties of influence diagram models emerge from the representation's
structural features alone and do not depend on the precise specification of conditional prob-
abilities. Given this observation, it is natural to investigate other decision model represen-
tations that share the structural features of influence diagrams but support a different class
of inferences about the relationships among decisions and events. In particular, we are in-
te,'ested in finding representations that are more robust than numerical decision models, yet
still provide decision-theoretic justification for some choices among competing plans.

Qualitative probabilistic networks (QPNs) [12] are influence diagrams with the numeric
conditional probability tables replaced by qualitative probabilistic relations among the vari-
ables. These qualitative relations can be viewed as constraints on the conditional probability
tables, expressing inequalities that must be satisfied by the various elements. 1

'l'he node types and topological dependence properties of QPNs and influence diagrams
are identical. Because qualitative relations are weaker than numeric conditional probability
tables, QPNs are abstractions of influence diagrams. While an influence diagram represents
a particular joint distribution among its random variables, a QPN represents a family of
such distributions satisfying its constraints. Without a unique joint distribution, of course,
it is not generally possible to determine the optimal decision. Rather, the aim of inference
in QPNs is to derive constraints on the form of the optimal decision policy.

2 Qualitative Relations

The constraints on probabilistic relations expressible in QPNs are not arbitrary. In fact,
QI'Ns permit only very regular patterns of inequalities to be asserted about conditional
probabilities. All qualitative relations take the form of conditions on the comparative prob-
ability distribution for a variable given various values for its predecessors in the network.
l 't F, denote the cumulative probability distribution for c as a function of its predecessors.

I'hc term "table" here is somewhat misleading because QPN variables need not be discrete.
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2 QUALITATIVE RELATIONS

This distribution is typically represented in an influence diagram by a, conditional proba-
bility table. In QPNs, qualitative relations constrain the value of P, without specifying it
precisely. Relations of one type, called qualitative influences, restrict the relative values of
1Pr upon variation of one of c's predecessors. Qualitative synergies constrain the behavior of
this distribution iupon changes of two predecessors at, on(ce. Both types of relation cai lbe
interpreted as probabilistic versions of nonotonicity conditions on the partial derivatives,
first- and second-order, respectively.

Specifically, a qualitative influence from a to c with sign + (-) means that the probability
distribution for c given a is nondecreasing (nonincreasing) in a-all else equal-in the sense
of first-order stochastic dominance. The notation S6(a, c), b E {+, -, 0, ?}, is used to denote
such an influence.

Definition 1 (qualitative influences) S 6(a,c) holds in a qualitative probabilistic network
G if and only if (iff), for all values co of c, x of c's predecessors in G other than a, and
a, > a2 of a:

Fc(colaix) R5 F,(cofa2x),

where R6 is <, >, or = as 6 is +, -, or 0, and R? is the complete relation (thus S? always
holds).

Such a complex specification of a rather straightforward concept is necessary for complete-
ness. The condition that the first cumulative distribution be no greater than the second for
all values of c is a requirement of first-order stochastic dominance. (Lower values for the
cumulative distribution correspond to higher probabilities for the larger values.) Quantifi-
cation over all values for c's predecessors (represented by the variable x, typically a vector)
realizes the "all else equal" part of the definition. Fixing all variables but one corresponds
to the usual interpretation of partial derivatives.

The qualitative synergy relation is intended to capture the intuition that an increase in
one variable has greater effect at higher levels of the other. In other words, the combined
effect of increasing the variables is greater than taking the two effects independently. One
way to define this probabilistically is demonstrated by the following qualitative synergy (Y')
confdition.

Definition 2 (qualitative synergies) Y 6({a, b}, c) holds in a QPN G iff for all ralues co
of chance node c, x of c 's predecessors in G other than a and b, a, > a2 of a, and b, > b2 of
b:

[F(cojajbix) - F'(coja2bjx)] R6 [F(cjaib2x) - J,(coIa2b2x)I.

Qualitatinc synergy on value, Y"( {a, b), v) holds iff the utility function u satisfies the follow-
in.q (with the same conditions on a, b, and x):

[u(a2,b,,x) - u(a,,bi,x)] Rb ju(a 2,b 2 ,x) - u(a,b 2 ,x)]. (1)
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3 EXAMPLE: A GENERIC DECISION MODEL

A QPN is represented by a directed acyclic graph, with nodes representing variables and
signied edges and hyle'r-edges represent, intg qualitative relations. A lin:k from a to 1) with
.sign 6 denloltes an assertion thaIM. S(a,). Ily conv('tion, S" a.ssertions arc ihtlplicit iII the
absence of a link.2 It. follows from the probabilistic definitions that any variable without all
influence link to some target is also non-synergistic (Y 0 ) with any other variable on that
target. However, the absence of a synergy hyper-edge for variables with nonzero influences
to a target does not imply anything about their interaction or non-interaction. Lacking an
explicit synergy, we adopt the conservative default, Y?.

The probabilistic definitions of the qualitative relations were chosen for two primary
properties. First, the relations are preserved by certain graphical inference operations. These
are discussed in some depth in Section 4 below. Second, qualitative relations involving
decision variables and the value node constrain the form of the optimal decision policy. The
example of Section 3 demonstrates these decision-theoretic implications of QPNs. See [121
for further motivation and discussion of the mathematical properties of qualitative influences
and synergies.

3 Example: A Generic Decision Model

A significant advantage of the qualitative formalism is that the relations are valid for a wide
range of contexts and interpretations of the variables. In support, of this assertion, Figure 1
presents the QPN representation of a generic decision problem.

The niodel of Figure 1 includes two decision variables, representing the choices of obser-
vationis and actions. These variables may be propositional (whether to perform the action),
or may admit a range of values on an ordered scale. The "act" has both costs and benefits,
each positively related to the degree to which the act is performed. For example, both the
therapeutic results (benefits) and undesirable sidc effects (costs) would increase in the sense
of .10 with the aggressiveness of a medical treatment (act). By definition, costs negatively
influence the value node whereas the influence of benefits is positive.

There is also an unknown "state of nature," 0, which affects the valuation of costs and
benefits. Although it makes no commitment about the direct effect of 0 on value (S7(0, v)),
the generic decision model requires that the state of nature be positively synergistic with
both costs and benefits. The synergy with benefits implies that the beneficial effects of the
action are enhanced for higher values of 0. For example, if 0 represents underlying disease
severity and the bntc fits of therapy reflect degree of cure, then the synergy captures the r
idea that a cure has greater value to patients whose diseases are more severe. The positive
synergy with costs rules out the possibility that 0 exacerbates the negative effects of the 11

"See Pearl [5] for a detailed treatment of independence implicit in the topology of a directed probabilistic
network.
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3 EXAMPLE: A GENERIC DECISION MODEL

infoJ + costs

at0 value
act

FIGURE 1. The generic decision model.

actions. In the therapy example, this implies that disease severity is at worst neutral with
respect to the side effects of the treatment.

Although the state 0 is not directly observable by the decision maker, there is another
variable, info, which is related to 0 by a positive influence. The dashed line from the decision
variable observe indicates that if the observation is performed, the value of info is accessible
to the decision maker for use in choosing a value for the action. The act of observing has
costs, but no benefits other than the value of information revealed in this way.3

The generic decision model is clearly inadequate to justify a particular choice for the
decision variable act. However, the model is strong enough to provide useful constraint
on the optimal action policy as a function of the information available. Using the graphical
inference operations described in Section 4, the query algorithm transforms the original QPN
into the reduced model of Figure 2.

As expected, the model fails to establish a nondegenerate relationship between act and
value. The useful result of Figure 2 is the positive synergy Y+({info, act}, v). Positive
synergy imposes a constraint on the utility function (1) that is sufficient to establish the
monotone decision property [7] on act and info. This property dictates that the optimal

3The dashed line is an auxiliary notational element not formally part of the qualitative probabilistic
network. This convention runs counter to the usual approach in influence diagrams, which include informa-
tional links as part of the model. In an influence diagram, performing the observation would actually change
the state of info. Since QPNs were designed to be used within the context of a general-purpose planning
program [11], 1 chose to maintain a uniform interpretation for observable variables and relegate the task of
maintaining observability constraints to the planner.
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3 1'XAMPIJ: A GENERIC DECISION MODEL

FIGURE 2. The generic decision model reduced to three variables.

value of act is a nondecreasing function of info. Thus, if the observation is performed
and the information is available, the decision maker should raise the level of act when the
information indicates the expected benefits are greater (and costs are no worse). If the
decision maker's policy is to choose act = act1 upon observing info = info,, then consistency
requires that it choose a value for act no greater than act1 when it observes info2 < info,. If
act is a propositional variable, the synergy result implies that the optimal policy is to take
the action iff info exceeds some threshold value.

Although the details of any particular decision situation will provide a stronger basis for
choosing a decision policy, the generic analysis above serves to bound the strategy space at
a very high level of abstraction. Such bounds are useful for restricting the search for optimal
policies, even with highly incomplete problem specifications. For example, we have applied
the generic decision model to justify rules for critiquing decision trees constructed by human
analysts using a general decision-making tool [13]. Because the constraints are justified by
a generic model, the critiquer needs only a qualitative understanding of the domain-specific
actions and events included in the model.

The fact that we can constrain the form of optimal decision policies at a high level of
abstraction is a feature unique to qualitative decision models. Of course, the literature is
full of generic decision-theoretic results derived from abstract mathematical models. The
contribution here is a qualitative decision-modeling formalism that permits such results to
be derived automatically via a uniform inference procedure.
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4 GRAPHICAL QPN OPERATIONS

4 Graphical QPN Operations

The key idea behind Shachter's algorithm for influence diagram evaluation [8] is that of t ruth-
preserving graphical manipulations. For numeric influence diagrams, truth-preserving means
that the joint distribution represented by the revised model is implied by the structures in the
original model. In the qualitative context, truth-preserving means that qualitative relations
in the original network entail qualitative relations on the joint distribution of variables in
the modified network. In other words, any joint probability distribution consistent with the
original QPN remains consistent after performing the truth-preserving operation.

Inference in QPNs-as in influence diagrams-is accomplished by applying sequences of
two truth-preserving operations: node reduction and link reversal. A chance node is eligible
for reduction iff it has at most one direct successor. Decision and value nodes can be reduced
simply by splicing them out and deleting any dangling links. A link between chance nodes
is eligible for reversal as long as there is no other directed path between the two nodes
(otherwise, the reversal would introduce a cycle). We define these operations by specifying
the qualitative relations holding in the modified QPN as a function of those in the original
model.

Suppose node c is eligible for reduction in G and let G' be the QPN obtained by reducing
c. The nodes of G' are just the nodes of G minus c. If c has no successors in G, then G'
maintains all qualitative relations of the original save those incident on c. Otherwise, c has
exactly one successor; call it d. In this case, all qualitative relations except those incident
on c or d are retained in G'. Let 6a,c represent the direction of influence between variables
a and c in G, and similarly 6{ab},c the synergy of a and b on c. The modified influence of a
variable a on d in G' is '6 ,d, where

a =d - a,d ( (ac 0 Vc,d). (2)

The operators E) and 0 denote sign addition and multiplication, respectively. Thus, the
influence update equation (2) sanctions chaining of qualitative influences, as long as the sign
obtained from a traversal of the path through c agrees with the existing link, if any, from
a to d. If the two paths disagree (or one is "?"), 6 a',d is assigned the "?" sign. If a and d
were not directly linked in G (6 a,d = 0, the identity element for E), then G' will include an
influence determined solely by the path through c.

The procedure for updating synergy links after reduction is similar, although there are
more factors to consider. For every pair of variables a and b that have influences on c or d
in G, the modified synergies are computed as follows:

',b,d = 6{Ja,b.d ( (6 {a, , -0 bc,d) E (bb,, 0 6 f{.c},d) P ( , N 6 {b,cJ},d). (3)

Figure :3 illustrates the situation before the update. In typical applications of reduction, not
all of the links shown are actually present in G. In such cases, some of the terms in the
above equation simply drop out.

6



.5 QUERY PROCESSING

5{a~cl~d

[8{a,b),c 8cd--8() b,

1C_. 8- bb~ )d

FIGURE 3. A fragment of QPN G before performing a QPN transformation. The relations on d
holding in G' after reducing c from the network are given by the update equations (2) and (3).
Reversing the link from c to d results in G", described by equations (4-6).

The second operation on QPNs is link reversal. Suppose we wish to reverse the influence
link from c to d in G, obtaining the modified QPN G". G" retains all the variables of G, as
well as all of the qualitative relations not incident on c or d. Using Bayes's theorem, it is
possible to show that the qualitative relation of d on c in the reversed notwork has the same
sign as the original link: '"

= bd. (4)

(Since QPNs are acyclic, G" cannot contain a link from c to d.) For any variable a that had
a link to c or d in G, the new qualitative influences are as follows.

, : a,c E (6 a,d 0?)

6 ,d ,d ED(oa.c 0 cd)(5)

We also must modify any synergy involving a on these variables.

({,b61,d = 6 {a,bj,d P (6a,b),, 0 6,,d) (D (6a,c 0 b{b,cl,d) (? (6 6,, 0 6 {a,c'l,d). 6

Synergies on c in G" are assigned "?" because more specific signs are not determinable fr'om
the pre- reversal qualitative relations.

5 Query Processing

The purpose of inference in QPNs is to determine qualitative relations entailed by those
specificd in the original network. By applying sequences of the truth-preserving operations

' e)'rivation for this as well as all other update rules are presented elsewhere [12].

7



.5 QUERY PROCESSING

alove, we can transforn the original QPN to one where the relations of hiterest, are dire'l.
For exaiiple, releated reductions and reversals transform the gciieric QPN of Iigiirc I Io
that, of Figure 2, where the qualitative relations of the action and informaltion on value ar
explicit.

A QPN query specifies j, the target node, and a set of conditioning variables, K. In the
C';xai q le jst, nieitioned, j is the value tiode and K = { act, info). The qt(r.-procc.(.ifl t(a.4
is to arrange the two QPN operations in a sequence such that the relations of K on j are
direct after executing the transformation. The qualitative relation of K on j is said to be
direct if the following conditions are satisfied:

1. prcd(j) C K, and

2. j V pred*(k), for all k E K,

where pred(n) is the set of direct predecessors of node n, and pred*(n) the set of all prede-
cessors, direct and indirect (that is, nodes with a directed path to n).

Under these conditions, the influences and synergies incident on j directly encode the
QPN's constraints on the probability distribution for j given K. The first condition rules out
the presence of extraneous conditioning variables. The second ensures that any k E K not
a direct predecessor of j is conditionally independent of the target given the rest of K [12,
Leimma 4.1j. In the transformed network, bkj denotes the sign of the qualitative influence
froin k to j in context K - {k}, and bf{k,k2},j the qualitative synergy of k' and k2 on j in
contlext, A' - { k1 , 2 }.

To process the query j = v, K {act, info} for the generic QPN, we could reduce t he
nodes observe, costs, and benefits (in any order), then reverse the link from 0 to iMfo, and
firially reduce 0. At each step, the object of the operation is eligible for reduction or reversal
in the intermediate network.

For any QPN query, in fact, there exists a sequence of truth-preserving operations that
produces a network in which the relation of K on j is direct. This proposition follows from
Shachter's analogous result for numeric influence diagrams [9], since the prerequisites for
reductions (at most one successor) and reversals (must not create a cycle) are identical.
For that matter, we can obtain a query-processing algorithm for QPNs simply by adapting a
known inference procedure for numeric influence diagrams, replacing the probability revision
equations with the QPN update rules of Section 4.

lowever, the qualitative probabilistic inference problem deserves special analysis, as it
differs from its numeric counterpart in two significant areas. First, unlike numeric influence
diagram evaluation, QPN query evaluation is sensitive to the sequence of operators applied to
iucover the direct relation. Although the solutions are consistent across different sequences,
the strength of the results may vary. For instance, one sequence of operations might produce

h ±.j = + while another result- in ambiguity, bk.j =

8



6 INFORMATION LOSS

Second, complexity considerations for the two types of lodel are (plite distinctl lII
contrast to manipulation of numeric influnce diagrains, tlie efliciency of QiPN inferece is
insensitive to the cardinality of the outcome sets for each variable. (In fact, qialit at iye odl.c
need not even specify these outcome sets.) To measure the complexity of a QPN query-
iprocessing algorithm, we merely count the number of sign additions and multiplicat ions
icessary to perform the required network transfornmlion.

In the following sections, I explore these issues and their implications for QPN infrence
algorithms. Note that many of the results presented are independent of the particular prob-
abilistic definitions for qualitative influences and synergies specified above; they are valid for
any qualitative relations that combine according to the algebra of Section 4. (However, there
are conditions for which these definitions are necessary for the kind of qualitative inference
we desire [12].)

6 Information Loss

A numeric influence diagram represents the unique joint probability distribution over t lie
variables in the network. The reduction and reversal operators preserve information, pro-
ducing an influence diagram representing the unique projection of the original distribution
onto the new variable set.

Because qualitative relations enforce inequalities on conditional probabilities rather than
,nique nineric values, a QPN represents a set of probability distributions consistent with
the constraints. QPN transformations are sound in that all qualitative relations in the
,niodified network are entailed by the original constraints. However, graphical inference is
not complete; there may be distributions consistent with the modified network that fail to
satisfy the original qualitative relations.

For example, suppose a and c both have positive links to d and are marginally indepen-
dent. Reversing the link from c to d yields a QPN with a "?" link from a to c, by (5). The
modified network no longer captures the unconditional independence of a and c. Worse, if we
reverse the link back using the same update rule, the "?" remains. Though the two reversals
should ideally be inverse operations, applying them in sequence considerably weakens the
network's constraint on the joint probability distribution.

Unfortunately, we cannot remedy this by strengthening the individual QPN update
rules (4 6); each produces the strongest constraint expressible within the qualitative prob-
ability algebra. The problem is that the set of qualitative signs {+,-,0,?} is not closed
tinder the network transformation operators. In the example above, an ambiguous relation
("?" the vacuous constraint) is introduced because no other qualitative conclusion is valid.
The act ial class of (Iistributions consistent with the original qualitative relations is not char-
acterized by any of the qualitative signs available. (Distributions allowed by "?" but not
consistent, with the original constraints are analogous to the spurious solutions produced by

9



7 MINIMIZING AMBIGUITY

qua litative reasoning inechanisins in general [4].) Not, surprisingly, a sin ilar problem arise.s
in other representations adil nuttl iig partial iMforination about probalbility distributions. For
instance, Fertig and Breese found that, the class of lower probability functions is not. closed
under influence diagram transformations [3].

The following result states that the potential for information loss in reversal is in fact
realized whenever non-degenerate predecessors exist-in other words, whenever there is in-
formation to lose. 5

Theorem 6.1 Information is lost in reversing the link from c to d unless all predecessors
of c or d have "?" influences to both nodes and "?" synergies with any other predecessors.

The following result establishes that information can be lost in reduction as well.

Theorem 6.2 Information is lost in reducing c from the network iff there are nodes a and
d such that:

" At least one of a and d is non-binary, and

* ,,,,E {+,-}, and

• bkc 0 6c,d = ( 6 a,d,

where () is sign negation.

When the direct link between a and d is of opposite sign from the path through c, S?(a, d) is
the result even though not dl distributions FdIa are consistent with the original constraints.

7 Minimizing Ambiguity

7.1 Order Dependence

Given the prospect of information loss, processing queries by graphical manipulation may
not lead to the strongest possible conclusions about the qualitative relations among variables
of interest. Moreover. different strategies (sequences of operations) for processing a given
query may differ in information lost and consequently yield solutions of varying strength.

Consider the QPN of Figure 4. Two simple transformations for revealing the direct
relation of K = {1 , k 2} on j are:

I. reverse y - j; reduce y; reverse 0 k', and

2. reverse y - k'; reduce y.

'Proofs of these results are provided in Appendix A.

10



7 MINIMIZING AMBIGUITY

Iloth procedures yield the relation S-(k,j). The first, however, is ambiguous about the
relation between k' and j, whereas tile second yields the more precise influence S+ . Note
Ihat both are valid; the transforiation riles are sound proba l)i listic inferenices. I lowevcr, tie
conclusions returned by the first procedure are weakened by the information loss incurred
upon reversal of the link from y to j.

lIGJlRE 4. The choice of links to reverse before reducing y determines the strength of tile final
result.

(iven a QPN and a query, we are clearly interested in finding the transformation sequence
that produces the strongest conclusions. If computational efficiency were not an issue, we
could perform all possible transformations, returning the strongest qualitative relations found
among all variables of interest. Such an approach straightforwardly implemented, however,
would require time exponential in the size of the network. Since each individual query-
processing transformation can be applied in polynomial time, an algorithm based on a single
operator sequence would be preferred. Ideally, we would like such an algorithm to apply the
sequence of operators minimizing ambiguity in the end result.

The problem, then, is to find a method to compute this ambiguity-minimizing sequence,
if it exists, given a QPN and a query. Although it would be convenient to derive this
tra.nsformation from structure alone, it is not possible to do so, as the transformation yielding
the strongest results may depend on the signs of the qualitative relations in the network.
("Structure" distinguishes only between zero and nonzero influences.)

The network of Figure 5 demonstrates the sign-dependence of ambiguity minimization.
Processing a query with K = {k,....., k4 } requires the reduction of y from the network along
with some reversals. If 6 =, the transformation sequence

reverse j -y; reverse y -- reverse y -+ k4 ; reduce y

yields the network with S4(k,j), i = 1 ... ,4. If 6 = ?, the same sequence results in "'?"
influences from each k' to j. The ambiguity is spurious for/, 1 and k 2, however, as revealed

by Ihe transformation

11



7 MINIMIZING AMBIGUITY

reverse y --+ k; reduce y; reverse j --+ 0; reverse j -4k4.

The latter sequence, on the other hand, returns S?(k,j) when b = +. Iln fact, no sequence
of reductions and reversals applied to this network yields the strongest results in both cases.

FIGUiRE 5. The optimal transformation sequence depends on whether 6 = ?.

The sign-dependence of ambiguity minimization is troubling, because in general deter-
mining the sign of a particular relationship could require query processing for an arbitrary
sub-network. Nevertheless, at present it is an open question whether an efficient algorithm
exists for minimizing ambiguity taking the signs of qualitative relations into accoint. This is
true even for the special case where all influences are "?" links. Smith considers the problem
of maintaining information about conditional independence under graphical transformations,
concluding that the problem of minimizing spurious ambiguity remains open [10].

The existence of an ambiguity-minimizing sequence is itself uncertain. There may be
cases (I know of none but have no proof of their impossibility) where no single sequence of
transformations produces results as strong as the union of all transformations. And even
if an ambiguity-minimizing sequence exists in this sense, it remains possible that stronger
results could be achieved using other transformation operators or perhaps an entirely different
inference method.

7.2 Transformation Invariants

Despite these unanswered questions, there is still much we can say about the inferential
properties of various query-processing strategies. The following propositions characterize
the legality of certain patterns in sequences of operations and establish invariants among
classes of sequences.

Proposition 7.1 Reducing a node does not negate the eligibility of any other node for re-
duction nor any link for reversal, but may establish such eligibility. Reversing an arc from
c to d negates the eligibility of both nodes' predecessors for reduction, possibly negates d's

12



7 MINIMIZING AMBIGUITY

eligibility, and possibly renders c eligible. All links to c become ineligible for reversal, some
links to d may become eligible, and some olher links may become ineligible.

Proposition 7.2 If two reductions, or a reduction and a reversal, can legally be applied in
either order, the resulting networks are identical. This is not true for two reversals unless
the nodes involved are disjoint.

A corollary of this result is that node removals (reversal of all outgoing links followed by
redluction) are order-invariant if the nodes are not directly connected and share no successors.
The next proposition characterizes a less restrictive form of invariance holding for reductions.

Proposition 7.3 Any sequence consisting exclusively of reductions is equivalent to any other
legal sequence of the same reductions.

Proposition 7.4 Reducing a node c is equivalent to reversing its outgoing link (if any), then
reducing it.

This last proposition is not surprising considering the correspondence between update
rules for the two operations (compare (2) and (3) with (5) and (6)). It implies that we can
simplify matters by only considering reduction of nodes with no successors. Since reducing
these barren nodes [81 entails no loss of information (by Theorem 6.2) and does not restrict
further operations (Proposition 7.1), these may as well be performed as early as possible.
Propositions 7.5 and 7.6 generalize this conclusion.

Proposition 7.5 To process a query (j, K), any node y without a directed path to j or som(
k E K can be summarily spliced from the network without updating the remaining links.

Proposition 7.6 Any node may be reduced as soon as it is eligible without increasing the
ambiguity of the transformation.

Treating the reductions as automatic, the transformation construction task becomes es-
sentially a matter of selecting the best sequence of reversals. The remaining proposition
determines this best sequence for a special case.

Proposition 7.7 If a node y E pred(j) is to be reduced after reversing all but one outgoing
link, the link not reversed should be y -- j.

The value of these propositions is that they provide constraint on the set of minimally
ambiguous transformations. One can use them to generate a single admissible transfor-
mation, or within a search procedure to prune the space of operator sequences that need
be considered. For example, Proposition 7.6 dictates that the query-processing algorithm
should greedily reduce nodes not in K U {j}, whereas Proposition 7.3 establishes that a
search algorithm may neglect transformations differing only in reduction order from one to
be performed.

13



7 MINIMIZING AMBIGUITY

7.3 Upper Bounds

Because the coverage of these propositions is incomplete, graphical inference still requires
heuristic choice of operators and/or a combinatorial search. Fortunately, we can often 1ini
the search by computing bounds on the optimal query-processing strategy. The following
results characterize some situations where isolated features of the network can dictate the
best results achievable by any sequence of transformation operations.

Definition 3 A free path from x to y with respect to K is a sequence N of nodes indezed
by (,...,m) such that

* 1 Z <fm,

* i : i' :: N(i) # N(i'),

• bN(),N(i-l1) #0 , for all i E {2,. z} ,

" bN(i),N(i+i) # 0, for all i C {z,.. .,n - 1}, and

" N(1) = x, N(m) = y, N(i) V K for 1 < i < M.

Node N(z) is called the pivot of N.

In other words, x and y are connected by a series of distinct nonzero links with no pair
poiniing into the same node and no links traversing nodes in K. Note that the node indexed
z could be x or y, in which case there is a directed path between the two nodes.

Proposition 7.8 Consider a network G with a free path N from j to k, k C A'. .-lly
iransformation of G processing the query (j, K) will result in S'(k.j), where

6 (o 6 N( i),N( i- )  _'<;> 6N(i),N(i+1))

and 6(; depends on the rest of the network.

Proposition 7.8 establishes an upper bound for queries based on a straightforward compu-
tation. Let 6 N be the sign product of the influences along a free path N. By the proposition.
the exact result of the query is 6 N (D bG for some 6G. By the properties of q, this value can
be no "stronger" than 6 N in the ordering of qualitative signs (zero provides the strongest
constraint; "?" the weakest). Let paths(x, y, K) be the set of all free paths from x to y with
respect to K. Then an upper bound for the bk,. upon processing the query (j, K) can be
found by computing

NEpaths(jkK)
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8 ALGORITHMIC COMPLEXITY

In particular, finding a free path N with 6 N = ? (indeed, finding a free path with any "'?"

link) indicates that "?" is an upper bound for tie relation of interest. The same is entailed
by the existence of two paths NI and N2 such that 6N, = + aid bl2 = -. In these cas's,
the bound is exact, as ambiguity is the weakest qualitative relation. An upper bound of ±,
in contrast, entails only that the result is in the set {+,?J.

'l'ie following propositions describe two general situations where ambiguity is inevitable,.
even if the original network contains no "?" links.

Proposition 7.9 Suppose the network contains free paths NI from j to k' and A 2 from k
to k', k, k' E K, with pivots indexed by zi and z2 , such that

1. (disjoint prefix) NI(i,) # N 2 (i 2 ) for all ii < zi and i2 < z2, and

2. (convergence) both N1 and N 2 end with links into k' (that is, N1 (zI) $ k' # N2(z2)).

Then any transformation of this network processing the query (j, K) will result in S?(k,j).

Proposition 7.10 Suppose the network contains two free paths from j to k, k E K, denoted
NI and N 2 with corresponding pivots indexed by z1 and z2 , such that Ni(zi) A2 and
N2,(z.2 ) V NI. Then any transformation of this network proeessing the query (j, K) will rtsult
1it (k,J).

7.4 More Open Questions

The bounds given by the propositions above are not generally sharp, and do not cover all sit-
uations. Further transformation principles are necessary to select which reversal to perform
in situations where several are available. Experience with various algorithms suggests that
upstream reversals are generally preferred (since information loss tends to get propagated
upstream anyway); however, we currently lack precise results to this effect.

It, remains to be seen whether optimal algorithms can be identified for special cases of
QPNs and queries. For example, queries with singleton K (that is, the relation of k on
j given nothing else) may be more amenable to analysis than the general problem. One
property commonly exploited in numeric probabilistic networks, single-connectivity, does
not, appear to offer much advantage. Note that the networks of Figures 4 and 5 are both
singly connected.

8 Algorithmic Complexity

As mentioned above, any query can be processed in time polynomial in the size of the
nietwork. This result follows from the analysis of Rege and Agogino's "topological" solution
of numerical influence diagrams [6], with an extra quadratic factor for updating synergies.
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9 SUMMARY

ill fa(At, any non-redundant transformation sequence (one without multiple reversals of the

same link) can be applied in polynomial time.
This conclusion highlights Ithe disparity in coiiipiitataioial properties betI ('w'i qualitat iV

and numeric influence diagrams. For the latter, complexity is highly sensitive to the size of
each variable's value set (see, for example, the analysis of Ezawa [2]), a factor irrelevant in
the qualitative realm. For some intractable numeric diagrams (those solvable by reductions
alone including the 3SAT construction used by Cooper [1] to demonstrate the NP-hardness
of numeric query processing), the efficient QPN transformation is guaranteed to be minimally
ambiguous.

The straightforward comparison is misleading, however, because graphical inference in
QPNs is incomplete. Although determining qualitative relations is often easier than deter-

miniing precise numeric relations, this is not necessarily true in the general case. A more
definitive statement awaits further results on minimally ambiguous transformations, the com-
plexity of transformation search, and the abstract qualitative probabilistic inference problem.

9 Summary

QPNs provide a representation for the qualitative relationships among variables without
re(tIiring excessively precise assessments. Like numeric influence diagrams, QPNs support
inference via. graphical manipulations. Because qualitative models incompletely specify the
joint distribution among variables, information is not always preserved by these manipu-
lations. In designing a query-processing algorithm, minimizing qualitative ambiguity is of

paramount concern.

I have established several properties of QPN transformations that enhance the strength of
derived relations or limit the search necessary to ensure minimal ambiguity. Unfortunately,
there is no procedure for deriving a minimally ambiguous transformation sequence based
solely on the topology of a QPN.

As indicated above, several open questions remain regarding the nature and even exis-
tence of optimal query-processing algorithms. In addition to these, several issues in qual-
itative probabilistic reasoning are worthy of further investigation. For example, inference

methods based on macro- or entirely new transformation operators may offer advantages

over sequences of reductions and reversals. Inference approaches not based on graphical
transformations should also be explored. Finally, extensions of the qualitative representation

itself ([11, Section 7.5]) will necessitate continued work on inferential aspects of qualitative
)ro)a)ilistic networks.

Acknowledgments

'i'h(, suggestions of Jack Breese, Eric Hanson, Elisha Sacks, Ross Shachter, and Kate Unrath
ii prove(l the quality of this paper.

16



A Proofs

lhe iot,.at.io For probauilil.y distrilblios follows [12].

Theorem 6.1 Information is lost in reversing the link from c to d unless all predecessors of
c or d have "?" influences to both nodes and "?" synergies with any other predecessors.

PROOF First we must establish that no information is lost when the stated condition is
met. If all predecessors have "?" influences and synergies on both c and d, the effect of two
reversals is to leave the network unchanged. Thus, the QPN after two reversals admits the
same set of joint distributions. Since reversal is a sound inference operator (all distributions
consistent with the model prior to reversal are also consistent post-reversal), each individual
reversal must also have preserved the set of consistent distributions.

To demonstrate information loss when the conditions are not met, I construct spurious
distributions corresponding to each distinct case. In doing so, I simplify matters by taking
c and d to be binary. This generalizes directly to multi-valued variables by constructing
distributions over the larger domains with the probability mass allocated according to some
binary criterion.

case 1: 6 a,c # ?. Suppose that b,, = 6,,d = + (the other sub-cases are analogous). Thus,
in the original network, a, > a2 implies

Pr(Clalx) > Pr(Cla2 4x), (7)

for all contexts x (instantiations of other predecessors of c). The reversal introduces d as a
predecessor of c.

Pr(Claix) = Pr(ClaDx) Pr(Djaix) + Pr(ClaDx) Pr(Djaix). (8)

Let. a, = Pr(Djaix). Consider a distribution with

Pr(Cla1 Dx) = 0 2,

Pr(Cla1 Dx) < a 2,

Pr(Cla21x) > max(l, 2(1 - a) ), and
I - a2

02(1 - )
Pr(Cla2Dx) =

I - a2

Such a distribution satisfies the both of the post-reversal constraints (b"', = + and 6".,=?).
as I'r(([aDT) > Pr(CjaDxr for either value of a. However, applying these inequalities to
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the cxpansion of I r((Iai.r) (8), we find that,

Pr(Clalx) < 02al + 02(1 - "s), whil'e
02(1 - ol)

Pr(Cla2x) > ala2 + I - al (1 - a2).I - a2

After simplifying, the two inequalities directly contradict the original constraint based on
6, = + (7). Thus, the QPN after reversal admits a strictly greater class of distributions
than the original.

case 2: 5ad 54 ?. As a representative sub-case, suppose 6a,d = 6c,d = +- These original
constraints dictate that Pr(DlaiCx) > Pr(Dla2Cx) for a, > a2. Using Bayes's theorem,

Pr(ClaiDx) Pr(Dlax)
Pr(DaCx) = Pr(ClaiDx) Pr(Djax) + Pr(ClaiDx) Pr(D!lax)

Suppose that
Pr(ClalDx) Pr(Cla2 Dx)
Pr(CfaIDx) = Pr(Cla2Dx) = C.

This is consistent with the constraints after reversal, as long as a > 1 (to sat'sfy 6, = )
Then

Pr(DlaiCx) = Pr(Dlax)(9)
a Pr(Djax) + I - Pr(Dax)(

The "?" link from a to d allows the possibility that Pr(Djaix) < Pr(Dla2x), which, together
with (9), would imply that

Pr(DlaCx) < Pr(Dla2 Cx),

violating the original constraint.

case 3: 6{a,b},, :# ?. Assume that both a and b have "?" influences on both c and d; the
other possibilities are covered by the cases above. Further, let us take b{a,b},bc = 6bc.d = +
(similar arguments will work for the other combinations). The positive synergy implies

Pr(Claibix) - Pr(Cla2 bix) > Pr(Clalb2x) - Pr(Clabsx), (10)

for a, > a2 and b, > b2. After reversal, d becomes a predecessor of c and there is no
synergy constraint among these variables. Consider a joint distribution for {a, b, c, d} where
Pr(a 1, b2, C, D) = 2/17 and Pr(a, b, c, d) = 1/17 for all other values of the variables. Such a
(listribution is consistent with the post-reversal constraints (6", = +) but fails to satisfy (10).
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case 4: /!,,,b), . We iced oInly cover cases where a and b have "?" influencos on boh h
c arid d, and "?" synergy on c. Suppose as a representative sub-case that 6 {bl,c b,d

Ilus, we must satisfy

Pr(DJIbIcx) - Pr(Dla2bicx) > Pr(Dlaib2Cx) - Pr(Dla2b2Cx).

However, the distribution of case 3 also violates this constraint, though it is permitted by
the post-reversal network.

case 5: b{ac},d - ?. For b{ac},d = cd = +, the distribution

Pr(a,C,D) = 2/9,

Pr(a,c,d) = 1/9, all other values

is a spurious consequence of reversal just as in the previous two cases.
Since these cases exhaust the condition of the theorem, reversal in all but degenerate

situations necessarily admits spurious probability distributions. 1-1

Theorem 6.2 Information is lost in reducing c from the network iff there are nodes a and
d such that:

" At least one of a and d is non-binary, and

* b.,I E {+,-}, and

* h,,. M~ 6',d =06.d

where E) is sign negation.

(if): I demonstrate information loss for a case with a non-binary, ba. = bad = +, and
,a = -. '[he other combinations satisfying the conditions can be argued analogously. After

reducing c, the QPN provides no constraint on the probabilistic relation between a and d,
as'

When c and d are binary, the probability distribution for d given a can be written as

Pr(Dla.) = Pr(Dla1Cx) Pr(Claix) + Pr(Dla3 Cx) Pr(Clajx),

or, with symbols substituted for corresponding terms:

Pr(Dfaix) = n,/3 + y,(1 - 3,). (11)
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Consider an ascending sequence of values for a: a, < a2 < a3 < a4. I show that the
distrib)tion

1Pr(D a x) = 2/3, 1/3,2/3, 1/3 for i = 1,2,3,4 (12)

is inconsistent with the original constraints, though it is allowed by the reduced network.
Since ai, < -y (,,1 -), it follows from (11) that

ai < lPr(Djax) < y,. (13)

Therefore -Yi > 2/3. And since both ai and -yi are nondecreasing in i (by ba,d +), 72 is
also at, least 2/3. Given that a, is nonnegative, we can use (11) to bound O from below:

> 1 Pr(D aix)

Thus, /32 > I - (1/3)/(2/3) = 1/2. The inequality holds for 3 as well, as We, = +. We use
this lower bound in turn to derive a bound on a. Rearranging (11), we get

7i - Pr(Djaix)a~i = 7i -

Noting that 2/3 < 73 < 1 and /33 1/2, we can use this to deduce that a3 > 1/2. As
a, is nondecreasing, a4 is also bounded from below by 1/2. But this contradicts the first,
inequalit.yof(13), as Pr(Dla 4x) = 1/3. Therefore the distribution of (12) violates the original
constraints, and information has been lost in reducing c.

(only if): I show that each of the conditions is necessary for information loss by establish-
ing that violating any one of them guarantees that all distributions consistent post-reduction
are also consistent, pre-reduction.

condition 1: one of a and d non-binary. As a representative case, take 6a,, = ad = +

Mid 6,,d = -. For simplicity assume c is binary, though it would do just as well to consider
it mutlti-vahed with all intermediate values having zero probability. After reducing c, all
probability distributions for a and d are consistent with the network. Since both variables
are binary, the post-reduction distribution is fully specified by Pr(DIAx) and Pr(DIAx).
These probabilities are related to the original constraints as follows:

Pr(DlAx) = Pr(DIACx) Pr(CIAx) + Pr(DIAOx) Pr(CI[Ax) (14)

Pr(DIAx) = Pr(DIACx)Pr(CAx) + Pr(DIACx)Pr(Cl4x). (15)

The question is whether all values for the LHS probabilities can be obtained from some
assignment to the RHS terms that is consistent with the specified qualitative influences.
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Consider the assignments

Pr(DIACx) = 0

lPr(DIACx) = Pr(CIAx) = 1.

These extreme values guarantee that any probabilities assigned to the other terms will satisfy
the inequalities entailed by bac, ka.d, and kc.d. In addition, let Pr(CIAx) = 0. Then the
equatio,,s (14) and (15) reduce to:

Pr(DIAx) = Pr(DJACx)

Pr(DIAx) = Pr(DIA'x).

Since the RIS terms are unconstrained by the other assignments, the qualitative influences,
or each other, any distribution for d given a and x alone is consistent with the original
constraints.

condition 2: ba,d E {+, }. If ad = 0, the distributions consistent with the network after
reducing c are those satisfying the constraint imposed by b",C 0 cd. Suppose that 6,, = +.
Then the qualitative influence of a on d after reduction is simply 6 ,,d. One cumulative
distril)ution satisfying the constraint 6, = + is6

F ifco>a (16)F (coax) 0 otherwise.

Since a and d are conditionally independent given c (6a,d = 0), the distribution for d given a

after reduction is:
Fd(dojax) = Fd(dolcox)dFr(colax).

Substituting in (16), we get
Fd(dolax) = Fd(dojcx)I=a,

where the distribution for d given c is evaluated at c = a. Thus, the distributions allowed
after reduction for a and d are equivalent to those allowed by 6 ,,d, which is the qualitative
influence obtained by reduction.

The other violation of condition 2 occurs when bad = ?. In this case the distribution
post-reduction is unconstrained. Indeed, no constraint, is warranted, as any distribution is
achievable. Regardless of 6 ,,d, the possibility that c and d are independent is consistent, in
which case the relation between a and d is constrained only by 6,d, which is to say not at
all.

,'For (16) to be well-defined, variables a and c must have identical domains. A more complicated argument

is re(lijired when the domains differ.
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condition 3: k, 0 6 c,d = e 6a,d. Suppose condition 3 were violated while condition 2
were not. Then 6,d agrees with a,c 0 6c,d and therefore persists as the qualitative relation
between a and d after reducing c. As above, since conditional independence of c and d
is always consistent, the distribution post reduction can be no more constrained than its
J)re-redtiction counterpart. Thus, no information is lost. £

D:
Proposition 7.1 Reducing a node does not negate the eligibility of any other node for re-
duction nor any link for reversal, but may establish such eligibility. Reversing an arc from
c to d negates the eligibility of both nodes' predecessors for reduction, possibly negates d's
eligibility, and possibly renders c eligible. All links to c become ineligible for reversal, some
links to d may become eligible, and some other links may become ineligible.

PROOF

reduction/reduction: Recall that a node is eligible for reduction iff it has at most one
successor. After reducing node c, c's predecessors lose c as a successor but inherit c's successor
if there is one. Since every node's successor list either stays the same or decreases by one,
previously eligible nodes remain so. If c has no successors, any predecessor linked only to c
becomes eligible for reduction.

reduction/reversal: A link is eligible for reversal if doing so would not create a cycle.
In other words, one can reverse the link from c to d if there is no indirect directed path
connecting the two. Since reducing a node creates no new paths, the operation cannot spoil
reve-sibility for any links. (Of course, links incident on the reduced node are eliminated by
the operation.) If the only path denying the reversibility of c -- + d happens to be c -+ e -+ d,
however, reducing e would render c -4 d eligible for reversal.

reversal/reduction: Upon reversing the link from c to d, each node gains the other's pre-
decessors. Each of these predecessors thus has at least two successors and hence is ineligible
for reduction. Since d gains c as a successor, it becomes ineligible if it previously had exactly
one. Similarly, c loses d as a successor, so it becomes eligible if previously it had exactly two.
Eligibility for other nodes is unaffected.

reversal/reversal: After the reversal, any predecessor of c has an indirect path to c via
d, thus ruling out reversal of its link to c. Pre-reversal links to d are rendered eligible by
the reversal just in case the only indirect path connecting its edges was through c. Links
connecting other nodes may become ineligible, for example if one of the new predecessor
links completes a path through c. No other links may become eligible for reversal, as any
indirect paths canceled by the reversal are reinstated by inheritance of predecessors.

ID
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Proposition 7.2 If two reductions, or a reduction and a reversal, can legally be applied in
(ither order, the resulting networks are identical. This is not true for two reversals unless
the nodes involved arc dijoint.

PROOF

two reductions: Suppose we are interested in the qualitative relation between a and d
after reducing c1 and c2 . Since the QPN is acyclic, assume without loss of generality that
d V pred*(a) and c2 V preds(cI). With these constraints, the only configurations of interest
have the nodes to be reduced between a and d-otherwise the reductions will not affect the
relation of interest. Thus, the relevant network fragment has the general form of Figure 6.
Some of the links shown may be optional (that is, 6 = 0). In fact, at least one of 61,2 and

bld must be zero in order to satisfy the requirement that c1 be legally reducible.

FIGURE 6. General QPN fragment for analyzing the order-invariance of reducing ci and c2.

Suppose we reduce c1, then c2 . Let 6,, denote the qualitative influence of y on z after
reducing c'. Applying the update rule for reduction (2),

2,d = b2,d.

Reducing c2 yields

ag .~' 6d T (6a'2 (9 4d).

After substituting the expressions for 6' above.,

ad= 6a,d (D (6a.j 0 6 1,d) e3 ([ba,2 eB (kaI 0 61,2)1 0 6 2,d)

= ba,d ( (b.,1 0 6,d) ( (.,2 0 62,d) (6-., 0 61,2 0 6 2,d). (17)
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If instead c2 were reduced first, the intermediate results would be

2 ,, a ( ' ( * 6 2 162, .

62, = 6 i,d E (61,2 0 6 2,d).

Subsequently reducing c1 yields

a~d = 6 d ( 0 51d)

= 6a,d ED (ba, 0 b2,d) (D (kai 0 6 ,d) ED (a,i 0 b1,2 0 6 2,d),

which is equivalent to the expression for 61 above (17).
To complete the argument we need to establish that the invariance holds for synergies as

well. Consider another node b with the same outgoing links as a in Figure 6. By an exercise
similar to that above (though more complicated'), we can derive the general expression for
the qualitative synergy of a and b on d after reducing c1 followed by c2 :

1l,2

6ab},d = {a,b},d (D (5{a,b},l 0 
6 1,d) (D (ib,l ( {a,1},d) (D (5a,1 0 5

{b,l},d)

q) (b{a,b},2 0 6 2,d) $ (6 {a,b}.i 0 61,2 0 6 2,d) (I) (6 b, 0 6{a,i},2 0 6 2,d)

ED (a,i 0 5{b,l),2 0 6 2,d)

eD (5b,2 0 b{a,2},d) (@ (bb,2 0 5a,J 0 b{2,1),d) E) (b,l 0 61,2 0 6 a,21.d)

TD (bb,l 0 b1,2 0 6aJ 0 b{2,1},d) (18)

(D (5a,2 0 5{b,21,d) TD (6a,2 0 bh, { ,2,1; ,d) xd (ba, 0 b1,2 0 b{b,21,d)

(%J 0 b1,2 0 bb,l 0 b{2,1},d). (19)

Note that lines (18) and (19) are zero and thus drop out, since at least one of b1,2 and b1,d

(and therefore 6 {2,1),d) must be zero.
It turns out that performing the calculation with c2 reduced first results in the same

synergy expression. Thus, .,b), d = .,b),d and reduction is pairwise order-invariant.

reduction and reversal: Consider the operations to reduce y and to reverse c -+ d. In
order for the operations to be applicable in either order, it must be the case that:

" y c and y # d (else the link would not exist post-reduction) and

• y _ pred(c) and y pred(d) (see Proposition 7.1).

Given these constraints, the updates for the two operations affect a disjoint set of qualitative
relations. Hence, the results are identical when performed in either order.

7"I'le calculations required to verify these propositions were substantially aided by a program for manip-
ulating QPNs with qualitative relations specified by symbolic expressions.
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two reversals: Reversals are not order-invariant in general. In fact, even the topology of
the resulting network depends on the order reversals are performed. For example, suppose
the only non-zero links in a network are cl -- d and c2 -i d. The orientation of the link
connecting the cis after the two reversals depends on which is performed first. (The sign on
the link is "?" in either case.)

If the two arcs reversed do not share a node, the two operations affect a disjoint set of
relations. In this case, the results do not depend on the order of the reversals.

El

Proposition 7.3 Any sequence consisting exclusively of reductions is equivalent to any other
legal sequence of the same reductions.

PROOF Let o be a sequence of nodes such that it is legal to reduce any node in the sequence
after all of its predecessors have been reduced. For convenience, index the nodes by their
order in a, so we can write a = (1,.. . n). Consider a', another legal sequence of node
reductions containing the same nodes as ar, though possibly in a different order. Without
loss of generality, suppose that the first node of a (node 1) is not first in a' (if it is, we need
only compare the tails of the sequences anyway). Thus, a' = (s,i, 1, t), where s and t are
subsequences of nodes.

Now consider a" = (s, 1,i,t), the sequence obtained from a,' by swapping nodes i and 1
in the order. First we must consider the the legality of a," as a sequence of reductions.

1. The subsequence s is obviously legal, as it constitutes the first part of the legal sequence
a7.

2. The legality of a implies that it is legal to reduce node 1 first, that is, in the starting
network. Therefore it must be legal to reduce node 1 after performing the sequence
s of reductions, as reduction alone cannot eliminate a node's eligibility for reduction
(Proposition 7.1).

3. Similarly, if it is legal to reduce node i after s (as in a'), it must also be legal to reduce
it after (.S, I).

Thus, we have established that it is legal to reducc nodes (s, 1, i) in that order. Proposi-
tion 7.2 dictates that, for any given network in which both orders are legal, reductions (i, 1)
and (1,i) have the same result. Therefore, since the prefixes are identical, reduction se-
quences (s,i, 1) and (s, 1,i) leave the network in the same state. Appending t then obviously
preserves the identity, and we have established that oa' and a" are equivalent.

By repeatedly swapping node 1 with its neighbor to the left, we can eventually produce a
se(quince in which it appears first. Because each step preserves both legality and equivalence,
the resulting sequence yields results identical to a'. Having done this, we can then proceed
to move node 2 to the left in the same fashion, until it, is second in the list. Repeating this
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fbr all liodes ill the series, we acheiCw ill I'he e(ld the se(Ilii(cv e7, thus dhemlonstrating that i,
is equivalent to a'. Since a and a' were unrestricted, we have established the equivalence of
all legal reduction sequences containing the same set of nodes.

D:
Proposition 7.4 Reducing a node c is equivalent to reversing its outgoing link (if any), then &

reducing it.

PROOF Let d be the sole successor of c and let a and b be generic predecessors of c and/or
d. (If there is no d the equivalence is trivial.) Compare the states of the network obtained
by reducing c and reversing c -- d. The correspondence of (2) and (3) with (5) and (6)
establish that 6

.,d = 6 'a,d and 6 {a,b},d = 6
{a,b},d" In contrast to the reduction, however, the

reversal may also result in other updates to influences and synergies on c. But since these
updates are rendered moot by subsequent reduction of the now-barren c, the ending states
are identical. [

Proposition 7.5 To process a query (j, K), any node y without a directed path to j or some
k E K can be summarily spliced from the network without updating the remaining links.

PROOF By Theorem 6.2, no information is lost in reducing barren nodes. Furthermore, the
network after reduction does not depend on the links, if any, into the barren node. We can
establish the proposition by demonstrating that all nodes satisfying the stated conditions
can be removed by a sequence consisting solely of barren node reductions.

Note that any barren node not in {j} U K trivially satisfies the conditions for y in the
proposition. Reducing all of these nodes has the same effect as summarily splicing them from
the network. After these reductions, some other nodes may have become barren. Suppose
we continue to reduce all barren nodes outside of {j} U K until no more exist. At that point,
all nodes meeting the conditions for y have been removed. To see this, observe that any
y must either be barren or have a barren successor (since the network is acyclic). As the
process ends only when there are no barren nodes not in {j} U K, y and all other nodes
satisfying the proposition must have been removed. -

Proposition 7.6 Any node may be reduced as soon as it is eligible without increasing the
ambiguity of the transformation.

PROOF Let c be the node eligible for reduction, and d its predecessor. First, note that
the only loss of information attributable to reduction is in case there is some a linked to
both c and d such that the path from a to d via c and the direct link are of opposite
signs (Theorem 6.2). In particular, no dependence information is lost. This, combined with
the fact that reductions cannot nullify the eligibility of subsequent operations, implies that
reducing c immediately is an optimal policy with respect to the information encoded in the
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topology of the network. Thus, we need consider only the potential introduction of spurious
ainbiguity due to premature reduction.

Next, let us examine the propagation of sign information in transformation operations.
Upon reduction of c, the new qualitative influence is given by

46' = b.,d E ( 6 .x 0 c,d). (20)

This information can be propagated to other relations via operations on adjacent nodes.
Specifically, there are four ways 6' can have an impact on the signs of other relations.

1. Reduction of a, d, or a node that is a direct successor of a and a predecessor of d.

2. Reversal of a -- d.

3. Reversal of a link x - d.

4. Reversal of a link d - x.

In the case of reduction, 6' appears as one of the terms in a recursive invocation of (20), with
the node names rebound. By the reasoning of Proposition 7.8, information lost in 6' can
never be recovered by iteration of this formula. In a reversal of a -+ d, all links into a are
updated by the same formula, and the same argument applies. Links into d are converted
to "?" regardless of 6", so the information loss had no adverse effect. The same is true of
influences affected by x -- d reversals: the a -- d link is updated by simple chaining and
a -- x is indiscriminately made ambiguous. Upon reversing d -+ x, a -* d is either "?" or
unchanged, while a -- x is updated as if d were reduced.

The updates above follow a general pattern. The actual sign of 6' matters only for
chaining relations: links arranged in a head-to-tail adjacency. Therefore, we have established
that the information lost in reduction does not propagate in any but the inevitable directions.
Given that there is no loss of dependence information, therefore, nothing can be gained by
postponing reduction. D

Proposition 7.7 If a node y E pred(j) is to be reduced after reversing all but one outgoing
link, the link not reversed should be y -+ J.

PROOF Suppose y has outgoing links to each of x and j, and let b be an arbitrary node
with a free path to y. By Proposition 7.5, we can assume without loss of generality that x
has a directed path to j or some k' E K. If the path is to j, then y -+ j is not reversible and
the conclusion of the proposition follows by necessity. (If j has a directed path to x, then
c -+ x is not reversible and the choice presumed by the Proposition does not. apply.) Thus,
* has a directed path to k'.

Note that both b and j have free paths to k' via y. At this point, Proposition 7.9 does not
apply, as the two paths violate its disjoint prefix condition (y is the pivot of the path from
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J). Upon reversal of y -- j, however, the pivot is eliminated and this condition is satisfied.
The implication of the reversal, then, is that any further query processing must result in a
"?" link between b and j. This ambiguity is iiot inevitable for a reversal of x -- j; hnce.
this operation is preferred. E-

Proposition 7.8 Consider a network G with a free path N from j to k, k E K. Any
transformation of G processing the query (J, K) will result in S6(k,j), where

\=U0 6N(i),N(i-1) ( 0 N(i),N i+I)) (G, (21)
(2<i<z Z<i<m-1

and bG depends on the rest of the network.

PROOF We establish the result by examining the effect of reductions and reversals on the
composition of the free path. The proof proceeds by induction on the number of operations
required for the transformation. Take as the base case the set of transformations implemented
by zero steps. These correspond to the degenerate free path where j is connected directly to
k and the query is answerable by inspection of the original network. In this situation, the
multiplicative chain (21) reduces to a single term bj,k, and bG is zero. Now hypothesize that
all transformations up to a specified size yield results of the form of (21). We show that any
additional operations preserve that form, as all expressions arising off the main path can be
additively factored out into the 6G term.

Let us adopt the notation N(i ± 1) to denote the successor of N(i) along path N, whose
index depends on whether i is less than or greater than the pivot, z. Reduction of a node
w V N can affect a link from N(i) to N(i - 1) iff N(i) is a predecessor of w and N(i ± 1) is
its sole successor. In this case, the sign on the link becomes

6Ni),N(i-1) bNAi)jN(i)i) () (6 N(i),w 0 6 wN(i4-1)). (22)

By the inductive hypothesis, the result of the rest of the transformation has the form of (21),
which we can write as

( 6 N(i),N(i-1) 0 6,) ( 6G, (23)

taking 6 R to denote the product of links from the rest of the chain. We can plug in the
right-hand side of (22) and multiply through, yielding

(bN(i),N(i±I) 0 SR) ( [( 6 N(t),w 0 6 w,N(i+l) 0 6 R) e 6G],

which satisfies the required form, with the expression in brackets substituted for the previous
ha.
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Next consider the reduction of a node N(h), h > z. We can establish that the new
Se(pi'ne(' N' = (N(1),..., N(h - 1), N(h + 1). N(m)) satisfies the conditions for a free
path. lFirst, note that all links are unchanged except fors

1N'(h-),N'(h) = 6 N(h-1),N(h+l) e (N(h-i),N(h) 0 bN(h),N(h+1))" (24)

Therefore, the free path is still fully connected by nonzero links, and the segment from N(Z)
to N(?n) remains directed. Again by the inductive hypothesis, the query result takes the
form of (23), with i = h - 1. Substituting the expression from (24) yields

([ bN(h-l),N(h+i) () (N(h-1),N(h) 0 bN(h),N(h+I))] 0 b"') e 6'.

Multiplying through results in

(ON(h-l),N(h) 0 bN(h),N(h+l) 0 65R) ED [(bN(h-1),N(h+i) 0 bR) ( 6 G],

again satisfying the required form.
The same conclusion holds by symmetry for reduction of N(h), h < z. The pivot N(z)

cannot be reduced because it has more than one successor.
By a similar argument, reversing a link not on the path preserves both the existence

of the path and the required form, since the update formula for either type of predecessor
influence (5) includes the original sign as an additive term. Suppose, then, that the link
from N(h) to N(h + 1) is reversed, for h > z. We can construct N' exactly as for the case of
reduction. The reversal introduces a new link from N(h- 1) to N(h+ 1), with sign computed
as for the corresponding reduction (24). By the argument above, the form of the result is
preserved for the new path N'. A symmetric argument is valid for reversing the link from
N(h) to N(h - 1), h < z.

The argument needs to be modified for reversing a link from the pivot itself. In this
operation no links on the path are affected except the one being reversed, and this one
maintains the same sign. After the reversal, however, the designation of pivot z must be
transferred to the other end of the reversed link in order to maintain the condition for a free
path. Since this path retains the same nodes and the same 6s, the inductive step follows

directly.
Because each operation preserves the target form (21) given that it holds for the rest of

the transformation, the entire transformation must maintain this result. --

Proposition 7.9 Suppose the network contains free paths N1 from j to k' and N 2 from k
to k', k, k' E K, with pivots indexed by zi and z2 , such that

I. (disjoint prefix) N 1(i1 ) # N 2(i 2) for all i1 < z1 and i2 < z2 , and

'Because the indices are renumbered, node N'(i) corresponds to N(i + 1) in the original sequence, for
i> h.
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2. (convergence) both N, and N2 end with links into k' (that is, Nl(z 1 ) # k' # N2(z2)).

Thcn any transformation of this network processing the query (j, K) will result in S?(k, j).

PRooF The proof is by induction on the lengths of N1 and N In the base case, IN1  =
IN 21 = 1: each path consists of a single direct link into k'. To , Jcess the query, the path
from j to k' needs to be removed. Since k' cannot be reduced, this entails a reversal of the
j -- k' link. If k is a predecessor of k' at the time of the reversal, the operation introduces a
link of sign "?" from k to j. This holds regardless of the signs of the links into k' (as long as
they are nonzero, a definitional property of free paths), by the reversal update rule (5). The
only way k would not be a predecessor of k' at this time would be if the k --- k' link were
reversed first. In this case, a "?" link from j to k is necessarily introduced. In either event,
there exists a free path of sign 6 N = ? from j to k, and therefore Proposition 7.8 implies
that the result of the query must be S?(k,j).

For the inductive hypothesis, assume that the result is true for all paths with IN, I n,
and IN 21 < n2. Given a chain with INIl = n1 +1 or IN 21 = n 2 +1, we show that any operation
iriest have one of the following effects:

1. to preserve the existence of paths N1 and N 2, of the same length, satisfying the condi-
tions of the proposition,

2. to preserve the existence of such paths with shorter length, or

:3. to introduce a free path from k to j with at least one "?" link.

In the first case, the situation is identical from the standpoint of our proposition and the
process can be repeated. In the second, we can invoke the inductive hypothesis that the
concli sion holds for paths of the shorter length. In the final case, we can invoke Proposi-
tion 7.8 directly, as in the base case, to establish the final result. Since the first case cannot
be maintained through the entire sequence of transformations-the query cannot be fully
processed in that state---eventually one of the other two must prevail, thus establishing the
indictive argument.

First consider a node reduction. As in the argument for Proposition 7.8 above, this
operation preserves the existence of free paths whether or not the node was previously on
one of the paths. Similarly, it cannot alter the disjointness of the path prefixes or the
convergence of their final links into k'. If the node to be reduced is on one of the paths, this
path is thereby shortened, thus fulfilling the condition for case two above.

Reversing a link not on one of the paths cannot negate its existence. As argued above,
reversing a link on a free path also preserves its existence, possibly at a length one node
shorter. lowever, we must address special attention to the case where the link reversed
is the final one in the chain, that into k'. Reversing this link does not obviously maintain
the convergence condition of our proposition. Suppose we reverse the last link of N, (the
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analysis for N 2 is symmetric). There are two relevant subcases, depending on whether the
irnmediate predecessor of k' on NJ is the pivot node. Let YI be the predecessor of k' on NJ

and y2 its counterpart on N2. If Yj $6 Nj(z,), then the reversal introduces a new link from
y,'s predecessor into k' and a new path N' is formed with one node fewer than NJ. A new
path N2 is also formed if y, = Y2. Otherwise, if yI = Nl(zl), the reversal introduces a link of
sign "?" from Y2 to Yi- (By the disjointness condition, the two nodes cannot be identical if
on is a pivot.) With this link, Y2 has a directed path to k. Since the segment of N 2 from j
to Y2 is a free path, so is the extended path from j to k via Y2. As noted above, the existence
of a free path with one "?" link is sufficient to establish that the result of query processing
is S?(k, A.

Because these cases exhaust the possibilities, conditions are maintained or progressed,
and the inductive argument is concluded. [-

Proposition 7.10 Suppose the network contains two free paths from j to k, k E K, denoted
N and N 2 with corresponding pivots indexed by z, and z 2, such that Ni(zl) V. N 2 and
N2(z 2) V N1 . Then any transformation of this network processing the query (j, K) will result
in S(kj).

PnooF By the arguments above, the existence of the free paths is preserved by all opera-
tions, an( the only operation that can affect the conditions on the pivot node are reversals of
links emanating from that node. Consider a reversal of the link from NJ (zl) to y, = NJ (z] + 1)
(the other cases are symmetric). If yi V N2, then the conditions of the proposition are pre-
served with a change in pivot to yl. Suppose yj is on the path N 2. Since yj is also on NJ, we
know it cannot be the pivot of N 2 and therefore it must have one predecessor, X2, on that
path. However, the reversal of NI(z 1 ) --* y1 creates (or updates) a link from X2 to N(zj)
with a "?" sign. Since X2 has a directed path along N 2 to either j or k, and Nj(zj) has
directed paths to both, there must be a free path from j to k with pivot X2 that includes
this new link. By Proposition 7.8, this is sufficient to entail ambiguity of the query. -
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